Updates on engineering and architecture jobs available around the world
Rationale
Flooding – the most wide-spread natural hazard – affects every country and region of the world. Flood risk is expected to increase due to climate change, as evidenced by recent recurring UK summer and winter floods. The UK climate projections (UKCP18) suggest a >10% increase in heavy rainfall by 2050, with much of this “very likely” to fall in a short period of time [1], causing more severe surface water flooding. This type of flooding threatens more UK people and properties than any other; 3.2 million properties in England alone. Reliable forecasting and early warning can improve preparations, response and recovery, but rapid onset and localised extent make observing and predicting surface water flooding from intense rainfall technically challenging, and our ability to provide reliable, detailed forecasts remains limited [2].
We recently made a significant contribution by developing a new high-performance hydrodynamic system to forecast surface water flooding across an entire catchment at unprecedented resolution [3]. But the latest developments in AI and data analytics technologies have not yet sufficiently exploited to advance operational surface water flood forecasting; uncertainties in different components a forecasting system, e.g. numerical weather predictions and flood dynamics modelling, need to be better understood, quantified and minimised.
Methodology
The aim of this exciting PhD project is to harness the latest developments in high-performance computing and deep learning (DL) technologies to address some of the key technical challenges, and finally demonstrate a DL-enabled system for mapping, risk assessment and real-time forecasting of surface water flooding from intense rainfall. The project will deliver the following key research tasks:
- Develop physis-informed DL models to integrate rainfall observations from different sources and identify conditions associated with very extreme rainfall from the outputs of convection-permitting numerical weather models, and then emulate such numerical weather predictions to create reliable real time forecasts or large ensembles.
- Integrate the improved weather forecasts with the Loughborough in-house High-Performance Integrated hydrodynamic Modelling System (HiPIMS) to forecast in real time the surface water flooding process at a meter-level resolution for assessing flood impact/risk on individual buildings/objects. HiPIMS will be ML-enabled to support rapid ensemble forecasting.
- Design and perform systematic numerical experiments to better understand and quantify the uncertainties in different steps, their interaction and propagation through the entire flood forecasting procedure, and interpret their implication on the final flood forecasting and risk products.
Demonstrate the system for real-time flood mapping, risk assessment and probability forecasting in a selected case study site.
Background Reading
Brown (2020) How much more climate change is inevitable for the UK? Committee on Climate Change, UK.
White et al. (2019) Flash flooding is a serious threat in the UK. The Conversation.
Ming X, Liang Q, Xia X, Li D, Fowler HJ (2020) Real-time flood forecasting based on a high-performance 2D hydrodynamic model and numerical weather predictions. Water Resources Research, 56, e2019WR025583.
Funding Details
Studentship type – UKRI through Flood-CDT (flood-cdt.ac.uk). The studentship is for 3.5 years and provides a tax-free stipend of £19,237 per annum plus tuition fees at the UK rate.
Tuition fees cover the cost of your teaching, assessment and operating University facilities such as the library, IT equipment and other support services. University fees and charges can be paid in advance and there are several methods of payment, including online payments and payment by instalment. Fees are reviewed annually and are likely to increase to take into account inflationary pressures.